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The effects of midrange repulsion in lattice Boltzmann models on the coalescence and/or breakup behavior
of single-component, nonideal fluids are investigated. It is found that midrange repulsive interactions allow the
formation of spraylike, multidroplet configurations, with droplet size directly related to the strength of the
repulsive interaction. The simulations show that just a tiny 10% of midrange repulsive pseudoenergy can boost
the surface:volume ratio of the phase-separated fluid by nearly two orders of magnitude. Drawing upon a
formal analogy with magnetic Ising systems, a pseudopotential energy is defined, which is found to behave
similar to a quasiconserved quantity for most of the time evolution. This offers a useful quantitative indicator
of the stability of the various configurations, thus helping the task of their interpretation and classification. The
present approach appears to be a promising tool for the computational modeling of complex flow phenomena,
such as atomization, spray formation, microemulsions, breakup phenomena, and possibly glassylike systems as
well.
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I. INTRODUCTION

In the last two decades, the lattice-Boltzmann �LB� ap-
proach has emerged as a powerful mesoscopic alternative to
classical macroscopic methods for computational hydrody-
namics �1–3�. The pseudopotential method, put forward a
decade ago by Shan and Chen to endow lattice Boltzmann
models with potential energy interactions, is one of the most
successful outgrowths of basic LB theory �4,5�. The Shan-
Chen �SC� model is based on the idea of representing inter-
molecular interactions at the mesoscopic scale via a density-
dependent nearest-neighbor pseudopotential ����. Despite its
simplified character, the SC model provides the essential in-
gredients of nonideal fluid behavior, namely a nonideal equa-
tion of state and surface tension effects at phase interfaces.
Due to its remarkable computational simplicity, the SC
method is being used for a wide and growing body of com-
plex flows applications, such as multiphase flows in chemi-
cal, manufacturing, and geophysical problems.

To date, the overwhelming majority of Shan-Chen appli-
cations have been performed within the original formulation,
whereby only first-neighbor attractive interactions are in-
cluded. This entails a number of limitations, primarily the
impossibility to tune the surface tension independently of the
equation of state. This limitation has been recently lifted by
introducing second-neighbor repulsive interactions �6�. Be-
sides offering an independent handle on the surface tension,
it has been observed that second-neighbor �midrange� repul-
sion may disclose an entirely new set of physical regimes,
particularly the onset of metastable multidroplet configura-
tions, which would be impossible to obtain with short-range

attraction alone. These configurations result from the exis-
tence of energy barriers �midrange repulsion� which slow
down and/or arrest the dynamics of coarsening and/or phase-
separation �7,8� In this work, we provide a quantitative ex-
ploration of the basic mechanisms behind this physically en-
riched scenario. To this aim, we investigate the structural
properties of multidroplet configurations, as well as their en-
ergetics, as a function of the main parameters of the model,
mainly the strength of the repulsive interactions. Upon pro-
gressive switching of this parameter, the system is found to
move from a single-droplet phase-separated fluid, to a mul-
tidroplet metastable configurations, all the way up to a qua-
siordered crystal-like structure.

II. STANDARD SHAN-CHEN MODEL

The standard lattice Boltzmann �LB� equation with
pseudopotential interaction can be expressed as follows:

f i�x� + c�i,t + 1� − f i�x�,t� = − ��f i − f i
eq� + Fi�x�� , �1�

where f i is the probability density function of finding a par-
ticle at site r� at time t, moving along the ith lattice direction
defined by the discrete speeds c�i with i=0, ¯ ,b. The left-
hand side of Eq. �1� stands for molecular free streaming,
whereas the right-hand side represents the time relaxation
�due to collisions� towards local Maxwellian equilibrium. Fi-
nally, Fi represents the total volumetric body force. In par-
ticular, we shall use a dynamic mean-field term connected
with bulk particle-particle interactions. The macroscopic
density � and velocity u� are given by �3�
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��x�,t� = �
i=0

b

f i, �2�

��x�,t�u��x�,t� = �
i=0

b

c�i f i. �3�

The equilibrium distribution function is calculated in or-
der to make the collision operator conserve mass and mo-
mentum: a common choice that satisfies the above con-
straints is the following:

f i
eq = wi��1 +

1

cs
2c�i · u� +

1

2cs
4 �c�i · u��2 −

1

2cs
2u2� . �4�

The Fi term in Eq. �1� represents the phase interaction,

F� = − G��x���
i=0

b

wi��x� + c�i�c�i, �5�

in which ���� is the local pseudopotential governing the in-
teraction and wi are statistical weights which will be defined
in the following. The expression of ���� by Shan and Chen
is the following:

� = ��0�1 − e−�/�0� . �6�

In this model, phase separation is achieved by imposing a
short-range attraction between the light and dense phases.
Indeed, such short-range attraction is responsible for the
growth of density contrasts through a dynamical instability
of the interface. In real fluids, such instability is tamed by
hard-core repulsion, while in the SC model such hard-core
repulsion is not included, for it would impose significant
penalty on the time-marching procedure, and is replaced in-
stead by a saturation of the attractive interactions above a
given density threshold, �0. Expanding Fi, Eq. �5�, in terms
of c�i, we find, to fourth order �9�,

F� = − C1cs
2G��� � − C2cs

4G��� �2� , �7�

where C1 and C2 are lattice-specific numerical factors. The
first term is responsible for the nonideal part of the corre-
sponding equation of state:

P = �cs
2 +

1

2
C1cs

2G��2. �8�

The second term in Eq. �7� is the inherent surface tension in
the SC model which yields

� = −
C2G

2
cs

4	
−�

�


��y��
2dy . �9�

Considering the interface-equilibrium condition, 1
cs

2
�p
�� = 1

cs
2

�2p
��2

=0, we find the critical condition for phase separation,
G�Gcr=−4.0, �cr=�0 ln 2.

III. SHORT- AND MIDRANGE INTERACTIONS

Our model is based on the interaction between each par-
ticle and a set of 24 surrounding neighbors, distributed over

two Brillouin zones �belts for simplicity�. The interaction
force in Eq. �1� reads as follows:

F� �x�� = �
k=s,m

Gk�k„��x��…�
i=1

bk

pkic�ki�k„��x� + c�ki�… , �10�

where the index k=s ,m labels the short- and midrange belts,
respectively, whereas c�ki denotes the ith set of discrete
speeds belonging to the kth belt. The pseudopotential

force consists of two separate components F� �x� , t�
=F� s�x� , t�+F� m�x� , t�, defined as follows:

F� s�x�,t� = G1��x�,t��
i=1

b1

wi��x�i,t�c�i�t

+ G2��x�,t��
i=1

b1

psi��x�si,t�c�si�t ,

F� m�x�,t� = G2��x�,t��
i=1

b2

pmi��x�mi,t�c�mi�t . �11�

In the above, wi are the weights of the first belt of neighbors,
the same as in the standard SC model; the indices k=s ,m
refer to the first and second Brillouin belts in the lattice, and
c�ki, pki are the corresponding discrete speeds and associated
weights, reported in Table I. Finally, x�ki�x� +c�ki�t are the
displacements along the ith direction in the kth belt.

Note that G is a measure of potential to thermal energy
ratio, and positive �negative� G correspond to repulsion �at-
traction�, respectively. The first belt is discretized with nine
speeds �b1=8�, while the second with 16 �b2=16� �see Fig.
1� and the weights are chosen in such a way as to fulfill the
following normalizations �10,11�:

�
i=0

b1

wi = �
i=0

b1

psi + �
i=1

b2

pmi = 1 �12�

�
i=1

b1

wici
2 = �

i=1

b1

psicsi
2 + �

i=1

b2

pmicmi
2 = cs

2, �13�

where cs
2=1 /3 is the lattice sound speed. Note that the

present set of discrete speeds and weights secures eight order
isotropy in the force evaluation. The pseudopotential ��x�� is
taken in the form first suggested by Shan and Chen �4�,
����=��0�1−e−�/�0�, where �0 marks the density value �criti-
cal� at which nonideal effects come into play and it is fixed

TABLE I. Links and weights of the two-belt, 24-speed lattice
�10,11�.

E�8�

psi= p�1�=4 /63, i=1,4

psi= p�2�=4 /135, i=5,8

pmi= p�4�=1 /180, i=1,4

pmi= p�5�=2 /945, i=5,12

pmi= p�8�=1 /15120, i=13,16
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to �o=1 in lattice units. Taylor expansion of Eq. �11� to sec-
ond order delivers the following nonideal equation of state
�EOS�:

p � P/cs
2 = � +

�g1 + g2�
2

�2�x�,t� , �14�

where gk�Gk /cs
2 are normalized coupling strengths. Further

expansion of Eq. �11� to fourth order provides the following
expression for the surface tension:

� = −
�G1 +

12

7
G2�

2
cs

4	
−�

�


��y��
2dy , �15�

where y runs across the phase interface. This is the analog of
Eq. �9�, with the correspondence C1G↔ �G1+G2� and
C2G↔ �G1+ 12

7 G2�.

IV. NUMERICAL RESULTS

With two parameters at our disposal, G1 and G2, the
present model allows a separate control of the equation of
state and surface tension, respectively. In particular, as
shown in previous work �12�, the nonideal part of the equa-
tion of state depends only on A1=G1+G2, whereas surface
tension effects are controlled by the combination G1+ 12

7 G2.
Since in the vicinity of �→0 higher-order terms come into
play, it proves expedient to define a new coefficient

A2 = G1 + 	G2, �16�

where the numerical factor 	 plays the role of a renormaliza-
tion parameter, whose departure from zero-order value 12

7 is a
measure of the influence of the higher-order terms. Compari-
son with numerical results shows that 	�3 /2 provides sat-
isfactory agreement, see Eq. �18�. This shows that, at a given

value of A1 �i.e., given density ratio between the light and
dense phase�, midrange repulsion �G2
0� is expected to
lower the surface tension of the fluid, thereby facilitating the
formation of multidroplet configurations with higher sur-
face:volume ratios than the standard Shan-Chen model.
Thus, the midrange potential is expected to act as a “surfac-
tant” �13–15�, where “surfactant” indicate that true surfac-
tants can be transported by many different mechanisms, lo-
cally changing the surface tension of the fluid, which is not
what the midrange repulsion in the present work does. Nu-
merically, the role of the midrange is to add higher-order
derivative to standard interaction force, which provides more
isotropy and enables control of the equilibrium surface ten-
sion. In order to explore this scenario, we have simulated
droplet formation by integrating the LB Equation �1�, �LBE�
in a two-dimensional �2D� lattice using the nine-speed 2DQ9
model �16–18�, out of a noisy density background
��� /�0.01� with initial density �in=�0 ln 2+�� in a peri-
odic domain. In all simulations, �=1. We have performed a
systematic scan over the force strength, by changing G1 and
G2 so as to keep A1=−4.9 while increasing A2 above the
Shan-Chen value A2=A1=−4.9. All simulations have been
performed with a resolution of 5122 grid points, and a total
simulation time t=500 000.

In Fig. 2, some snapshots of the density at final time are
shown for different values of A2. In Fig. 3, it is shown the
number of droplets, at the end of the simulation, as a func-
tion of A2. The simulations show a threshold in phase-
separation as G2 increases towards a critical value, A2c: be-
yond A2c, the density field exhibits numerous stable droplets,
distributed according to a quasiordered configuration, some-
how reminiscent of a crystal-like configuration with defects.
The numerical value of A2c can be roughly estimated by
noting that, to fourth order in the lattice spacing, the total

force due to intermolecular interactions, Ftot
� =F� s+F� m, is

given by

Ftot
� = − �cs

2A1��� � +
A2cs

4

2
��� ��� , �17�

where, as previously mentioned, A1=G1+G2 controls the
magnitude of the phase separation �liquid to gas density� and
A2=G1+	G2 is directly linked to the surface tension. A di-

mensional argument gives l2=
cs

2

2
A2

A1
= 1

6
A2

A1
, thus yielding

l 
1
�6
�A2

A1
, that is,

l

l1
=�1 −

G2

2
G
ef f


, �18�

where 	=3 /2 has been used in the rightmost expression. In
the above, l is the typical size of a nucleus and l1 is the
typical single-droplet size for the Shan-Chen case. With this
choice of 	, the resulting spinodal value, at which l→0,
turns out to be G2c=9.8, corresponding to A2c=0.0. For this
value, the coefficient in front of the second term in Eq. �17�
vanishes, thus signaling the onset of a phase-transition. This
value is found to be in good agreement with the numerical
simulations, which indicate complete nucleation starting
around a value of A2�0, as shown in Fig. 3. The number of
droplets in the first region, called the multidroplet region, can

FIG. 1. �Color online� Two-belt lattice for force evaluation.
Each node is labeled by the corresponding energy 
cki
2. Belt 1
contains 9 speeds �c0=0� and two energy levels �1,2�. Belt 2 con-
tains 16 speeds, distributed over three energy levels �4,5,8�.
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be described as a function of time as n�t�= �−1�−p�t�, with
p�t�= 2

1+t/10tcap
, where =G2 /G2c and tcap= H�

� . This relation
can be related to simple statistical physics arguments �12�.
The region after the transition, where nucleation takes place,
has been fitted by a simple linear function n��=a, where
a=104. It is worth mentioning that the same linear behavior
in the emulsion region is also observed for a coarser domain
�12�. However, the coefficient a is not universal, as it de-
pends on the domain size. This may be related to the break-

down of scale invariance of phase-separating fluids as ob-
served in �19�.

It is instructive to inspect the spatial distribution of the
phase-separated fluid as the A2 parameter is increased. In the
present model, as well as in the standard Shan-Chen, phase
separation starts immediately and spontaneously, once the
parameters are chosen in the critical range: in the Shan-Chen
model and in the two-belt model �with A2 below the critical
value�, small droplets coalesce in larger droplets of increas-

(a)

(b)

(c)

(d)

FIG. 2. �Color online� Spatial distribution of the fluid density. The formation of a large number of droplets with increasing A2 is well
visible. �a� Standard Shan-Chen, A1=−4.9, A2=−4.9, nx=ny=512, t=500 000. �b� Multidroplet, A2=−2.85, nx=ny=512, t=500 000. �c�
Multidroplet, A2=−0.8, nx=ny=512, t=500 000. �d� Multidroplet, A2=0.15, nx=ny=512, t=500 000. The right-hand panel shows the
Fourier spectrum of density fluctuations. Such spectrum, initially a white noise, evolves towards a shape peaked at the �inverse� size of the
droplets. These Fourier spectra show that small-scale contribution is significantly higher when increasing the midrange repulsion, that is A2,
indicating the formation of long-lived metastable states in the form of small droplets. In particular in the last picture �d�, at the end of the
simulation there is a clear peak at RL /2k�30.
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ing size, until only a few of them, or even just one, are left.
This is the spatial configuration which minimizes the surface
energy expenditure. To study this spontaneous coalescence
and its relation to the model parameters, a Fourier analysis of

the density field has been conducted, based on the structure
factor S�k , t�,

S�k,t� =
1

N��x
���x,t� − �̄�t��eik·x�2

, �19�

where k= � 2�
L ��l ,m�, x is the lattice point, L is the linear

lattice size �equal to 512 in our case�, N=L2 is the total
number of grid points, ��x , t� is the density field at time t,
and �̄�t� is the average density field at time t. It is possible to
average the structure factor in k space, as follows: S�k , t�
=

�kS�k,t�
�k1

, where the sum is over a circular shell defined by
�n−1 /2�� 
k
L /2�� �n+1 /2�.

This first moment of the circularly averaged structure fac-
tor can then be used to assess the characteristic length scale

of the droplet, R�t�=2� / k̄�t�, where

k̄�t� =
�kkS�k,t�
�kS�k,t�

. �20�

Note that k=1 means R= L
2 . The right columns in Figs. 2, 4,

and 5 show the time evolution of length scales for various
�A1 ,A2�. As is well visible from the figures, after 500 000
time steps, all configurations have settled down to their
steady state, except the configuration with A2�A2c the typi-
cal droplet size being a decreasing function of A2. It is inter-
esting to notice the growth of macroscopic islands, cutting
across the entire computational domain, in the emulsion re-
gion. This is reflected by a significant buildup of the low-k
region of the spectrum, yet another signature of a phase-
transition behavior. In Fig. 6, we show the evolution in time
of the typical radius of some configurations. The radius is
calculated from the circularly averaged structure factor, as
described by Eq. �20�. For the standard Shan-Chen case, the
radius grows until the maximal value of RL /4, corre-
sponding to a single droplet. In this case, the domains grow

-4 -2 0 2
A2

1

10

100

1000

10000
n

dr
op

le
ts

Num. res. t=10
4

Num. res. t=5x10
5

Analytical fit Multi-droplet
Analytical fit Emulsion

Emulsion

Multi-droplet

FIG. 3. Number of droplets versus A2 after a short time
t=10 000 and final time t=5�105. The vertical line denotes the
transition zone from the multidroplet to the emulsion region, in
correspondence with the theoretical spinodal point A2c=0. The stan-
dard SC single-droplet region is associated with A2→−4.9
�G2→0�. For 0�G2�G2c metastable multidroplet configurations
are found, which tend, nevertheless, to the single-droplet equilib-
rium configuration after a sufficient long time. For A2
0, the re-
laxation time associated to the decay to this equilibrium state be-
comes formally infinite �no changes in time for all observables�,
indicating that the nonequilibrium phenomena that sustain these
metastable states experience very slow dynamics. The solid lines
represent two different fits for the two regions, the multidroplet and
the emulsion one. Respectively, they are given by n�t�= �1−�−p�t�,
with p�t�= 2

1+t/10tcap
and =G2 /G2c; n��=a with a=10 000.

(a)

(b)

FIG. 4. �Color online� Spatial
distribution of the fluid density for
the spray-emulsion configuration.
The crystal-like ordered structure
of droplets is evident in �b�, where
most of droplets are organized
into six-neighborhood structures.
A1=−4.9 in all cases. �a� A2

=0.65, nx=ny=512, t=500 000.
�b� A2=1.15, nx=ny=512,
t=500 000. The spectrum of den-
sity fluctuations shows a sharp
peak corresponding to the typical
size of the droplet. For the case �a�
we obtain a typical radius of
R�8, whereas in the second and
more ordered configuration,
R�6.5.
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according to a subdiffusive power-law R�t��t− t0��, with a
growth exponent �=1 /3 �20�. In the other cases, after the
transition to the emulsion region, the asymptotic radius at-
tains a much smaller value. For A2=0.15, the radius still

grows, although more slowly, with a growth exponent �
=1 /6, indicating that this metastable state will reach the
asymptotic single-droplet state in a very long, but finite,
time. On the contrary, for the other two cases in the emulsion
region, the radius does not show any appreciable change
over the entire simulation time span. These states appear
completely frozen and do not show any visible dynamics
towards a more stable state.

V. PSEUDOPOTENTIAL ENERGY EVOLUTION

The pseudopotential LB models bears a formal resem-
blance to dynamic mean-field Ising formulations of magnetic
systems. Of course, a major difference with respect to Ising
systems is that our fluid model is clearly not a Hamiltonian
one. It is nonetheless of interest to define a pseudopotential
energy, E�t�=Es�t�+Em�t�, where

Es�t� =
1

2�
x,y

��x,y ;t��
i=0

b1

�G1wi + G2psi���x�si;t� , �21�

Em�t� =
1

2�
x,y

��x,y ;t��
i=0

b2

G2pmi��x�mi;t� �22�

are the contributions from the first and second belts, respec-
tively. This definition, suggested by a direct analogy with the

(a)

(b)

(c)

FIG. 5. �Color online� Spatial
distribution of the fluid density for
the spray-emulsion configuration.
As in previous picture, Fig. 4,
A1=−4.9 in all cases and the cor-
responding Fourier spectra of den-
sity fluctuations are reported in
the right panel. �a� A2=1.65, nx
=ny=512, t=500 000. �b� A2

=2.15, nx=ny=512, t=500 000.
�c� A2=2.65, nx=ny=512, t
=500 000. Besides the sharp peak
centered around the mean size of
the droplets, the buildup of a low-
k component with increasing A2 is
well visible, corresponding to the
formation of large-scale domains
indicating a higher degree of order
in the global structure. The con-
figuration presented in �c� is
strongly reminiscent of a crystal,
with very few defects. For these
cases, the typical radius is esti-
mated as follows: �a� R�5.1; �b�
R�4.4; �c� R�3.9.

1×10
3

1×10
4

1×10
5

time

1

10

100

1000

R
(t

)

A
2
=-4.9

A
2
=2.65

A
2
=0.15

A
2
=0.65

at
1/3

bt
1/5

FIG. 6. Time evolution of average domain size R�t� �lattice
units� versus time �time steps� for different cases. Curves from top
to bottom correspond to systems with increased midrange repulsion
�systems with increased average “surfactant” concentration�. The
straight line represents a power law R�t��t− t0�1/3 which is typical
of diffusive growth. The dashed curve is R�t��t− t0�1/5.
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Ising Hamiltonian H�s�=�x�y=x�1s�y�J�x ,y�s�x�, is also in
line with the expression of the forces, Eq. �10�.

By expanding �i in powers of ci, to zero order �local-
density approximation�, we obtain the bulk contribution

Ebulk =
A1

2 �
x,y

�2�x,y� , �23�

while the next order �weak-gradient approximation� delivers
a surface term

Esurf =
A2

2 �
x,y

„���x,y�…2, �24�

where we used the normalizations in Eqs. �12� and �13�.
In Fig. 7, the ratio of the global pseudoenergy to the ther-

mal energy Eth=�cs
2L2 is shown as a function of time for

increasing values of the second-belt coupling A2. The figure
shows that the steady-state value of the pseudoenergy is a
monotonically increasing function of A2, the standard SC
case �A2=0� being the lowest-energy phase-separated con-
figuration. The initial rise of the global energy reflects the
buildup of surface energy due to interface formation. Once
such short transient is settled down, the pseudoenergy re-
mains pretty constant in time. Since the “thermal energy” Eth
is strictly conserved in time, the total pseudoenergy, thermal
plus potential, may indeed be paralleled to a true conserved
quantity �Hamiltonian� for most of the time evolution of the
system, except a very short initial transient.

In Fig. 8, the time evolution of the ratio of first-belt to
second-belt pseudoenergy, for increasing values of the pa-
rameter A2, is shown. Here again, after a very short transient,
the ratio settles down to a constant value, which is an in-
creasing function of A2. It should be noted that in all cases
the ratio is less than 10%. Yet, the effect on the surface:vol-
ume ratio of the fluid configuration is a very sizable one, as
we shall discuss shortly. The ratio between interfacial and
bulk components can be estimated as Esurf /Ebulk A�x

V
�x
� , �

being the width of interface, A the interfacial area and V
=L2 the volume of the simulation box. We have checked that
the total volume of the liquid phase is the same as in the
standard SC case, whereas the interfacial area grows roughly
with the scaling relation area:volume n1/2, n being the
number of droplets. This is simply explained in term of mass
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FIG. 7. �a� Time evolution of total pseudoenergy E�t� in units of
the thermal energy Eth=�cs

2L2 for increasing value of the second-
belt coupling A2. The steady-state value of the pseudoenergy is a
monotonically increasing function of A2, the standard SC case �A2

=0� being the lowest-energy phase-separated configuration. In that
sense, the standard SC configuration may represent a ground state
with a discrete spectrum of excited states triggered by increasing
discretely A2. �b� Time evolution of Etot and Ebulk, Eqs. �20� and
�22�. The surface energy, given by the difference Etot-Ebulk is found
to be always positive, as it should be. Furthermore, it is possible to
see that the surface contribution increases from the multidroplet to
the emulsion region �see Fig. 3�, consistently with the picture of
states which become increasingly excited with increasing A2. In the
above scales, the two plots in the SC case would almost coincide,
since the surface contribution is a mere �0.001, instead of �6% for
the emulsion case.
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FIG. 8. Time evolution of the ratio Em /Es of the energy associ-
ated with the second to first belt, Eq. �22�. The SC line �full� rep-
resents the ground state. As A2 overcomes A2c, the energy level
increases sensibly due to the interfacial contribution. This figure
shows the importance of repulsive midrange interaction in the
emulsion region. This interaction is responsible for arresting the
droplet coalescence sustained by short-range interaction, thereby
promoting increased order in the geometrical distribution of the
droplets.
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conservation: the volume of a single droplet is given by �R2,
while with n droplets, the same volume is given by �nRn

2, so
that Rn�R /�n. This argument together with the dependence
of the number of droplets on the midrange force G2 shown in
Fig. 4 gives a relation between the final average domain size
and the force RG2

1/2. This nonlinear dependence is seen in
Fig 6.

The consistency between theoretical estimation and simu-
lation results has been checked. For instance, for the case
A=0.15, typical values are A /V0.1 and � /�x10, such
that the surface energy should be of the order of 1%. This is
in line with the actual surface energy, as shown in Fig. 7.

In Fig. 9 we show the surface �perimeter in two dimen-

sions� of the multiphase fluid as a function of time for dif-
ferent values of A2. This is seen to go from roughly
5�10−3 of the volume for the SC configuration, up to 0.19
of the volume for the emulsionlike configuration, thus show-
ing a factor 40 boost in surface:volume ratio, even though
the “potential” energy in the second shell is just 10% of the
energy in the first shell, as shown in Fig. 8. Such a dramatic
boost shows that indeed a tiny amount of midrange repulsion
can cause dramatic effects on the macroscopic fluid configu-
ration. From this time evolution, it is possible to extract a
rough estimate of the equilibrium relaxation time of the sys-
tem, namely the time necessary to relax to the minimum
“free-energy state” �single droplet�. For the standard Shan-
Chen model, this time has been measured to be tsc�103.

VI. CONCLUSIONS

Summarizing, the effects of midrange repulsion in lattice-
boltzmann models of single-component, nonideal fluids are
investigated. The simulations show that midrange repulsive
interactions promote the formation of spraylike, multidroplet
configurations, with droplet size directly related to the
strength of the repulsive interaction. Our results indicate that
a small amount of midrange repulsion can dramatically in-
crease the surface:volume ratio of the multiphase fluid.

The present approach should offer a useful tool for the
computational modeling of complex flow phenomena, such
as atomization, spray formation, microemulsions, breakup
phenomena, and possibly glassylike systems as well �21�.
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